

The new Q.PRIME L-G5 is the result of the continued evolution of our monocrystalline solar modules. Thanks to improved power yield, excellent reliability, and high-level operational safety, the new Q.PRIME L-G5 generates electricity at a low cost (LCOE) and is suitable for a wide range of applications.



# LOW LEVELIZED COST OF ELECTRICITY

Higher yield per surface area and lower BOS costs and higher power classes and an efficiency rate of up to 18.0%.



# **INNOVATIVE ALL-WEATHER TECHNOLOGY**

Optimal yields, whatever the weather with excellent low-light and temperature behaviour.



# **EXTREME WEATHER RATING**

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (2400 Pa).



# **MAXIMUM COST REDUCTIONS**

Lower logistics costs due to higher module capacity per box.



# A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance warranty<sup>1</sup>.







See data sheet on rear for further information.

THE IDEAL SOLUTION FOR:







| EL                                                                                  | ECTRICAL CHARACTERISTICS                                             |                           |              |       |       |       |       |       |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|--------------|-------|-------|-------|-------|-------|--|
| PO                                                                                  | WER CLASS                                                            |                           |              | 325   | 330   | 335   | 340   | 345   |  |
| MINIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC1 (POWER TOLERANCE +5 W / -0 W) |                                                                      |                           |              |       |       |       |       |       |  |
| Minimum                                                                             | Power at MPP <sup>2</sup>                                            | $P_{MPP}$                 | [W]          | 325   | 330   | 335   | 340   | 345   |  |
|                                                                                     | Short Circuit Current*                                               | I <sub>sc</sub>           | [A]          | 9.22  | 9.29  | 9.35  | 9.41  | 9.46  |  |
|                                                                                     | Open Circuit Voltage*                                                | V <sub>oc</sub>           | [ <b>V</b> ] | 45.6  | 45.7  | 46.0  | 46.1  | 46.3  |  |
|                                                                                     | Current at MPP*                                                      | I <sub>MPP</sub>          | [A]          | 8.67  | 8.76  | 8.84  | 8.91  | 8.99  |  |
|                                                                                     | Voltage at MPP*                                                      | $\mathbf{V}_{\text{MPP}}$ | [ <b>V</b> ] | 37.5  | 37.7  | 37.9  | 38.2  | 38.4  |  |
|                                                                                     | Efficiency <sup>2</sup>                                              | η                         | [%]          | ≥16.7 | ≥16.9 | ≥17.2 | ≥17.5 | ≥17.7 |  |
| MIN                                                                                 | MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NOC <sup>3</sup> |                           |              |       |       |       |       |       |  |
|                                                                                     | Power at MPP <sup>2</sup>                                            | $P_{MPP}$                 | [W]          | 239   | 243   | 246   | 250   | 254   |  |
| Minimum                                                                             | Short Circuit Current*                                               | I <sub>sc</sub>           | [A]          | 7.46  | 7.51  | 7.56  | 7.61  | 7.65  |  |
|                                                                                     | Open Circuit Voltage*                                                | V <sub>oc</sub>           | [ <b>V</b> ] | 42.8  | 42.9  | 43.1  | 43.2  | 43.4  |  |
|                                                                                     | Current at MPP*                                                      | I <sub>MPP</sub>          | [A]          | 6.93  | 7.00  | 7.06  | 7.12  | 7.18  |  |
|                                                                                     | Voltage at MPP*                                                      | $V_{\text{MPP}}$          | [ <b>V</b> ] | 34.5  | 34.7  | 34.9  | 35.1  | 35.3  |  |
|                                                                                     |                                                                      |                           |              |       |       |       |       |       |  |

1000 W/m², 25 °C, spectrum AM 1.5G 2 Measurement tolerances STC ±3%; NOC ±5% 3 800 W/m², NOCT, spectrum AM 1.5G \*typical values, actual values may differ

# Q CELLS PERFORMANCE WARRANTY

# Thomas and the second of the s

At least 97 % of nominal power during first year. Thereafter max. 0.7 % degradation per year.
At least 90.5 % of nominal power up

to 10 years.
At least 82% of nominal power up to

At least 82% of nominal power up to 25 years.

All data within measurement toler-

ances.
Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country

## PERFORMANCE AT LOW IRRADIANCE



Typical module performance under low irradiance conditions in comparison to STC conditions (25  $^{\circ}$ C, 1000 W/m²).

## TEMPERATURE COEFFICIENTS

| Temperature Coefficient of I <sub>sc</sub>  | α | [%/K] | +0.05 | Temperature Coefficient of $\mathbf{V}_{\mathrm{oc}}$ | β    | [%/K] | -0.31 |
|---------------------------------------------|---|-------|-------|-------------------------------------------------------|------|-------|-------|
| Temperature Coefficient of P <sub>MPP</sub> | γ | [%/K] | -0.40 | Normal Operating Cell Temperature                     | NOCT | [°C]  | 45    |

| PROPERTIES FOR SYSTEM DESIGN                               |                    |              |           |                                                    |                   |
|------------------------------------------------------------|--------------------|--------------|-----------|----------------------------------------------------|-------------------|
| Maximum System Voltage                                     | $\mathbf{V}_{sys}$ | [ <b>V</b> ] | 1000      | Safety Class                                       | II                |
| Maximum Reverse Current                                    | I <sub>R</sub>     | [A]          | 20        | Fire Rating                                        | С                 |
| Wind/Snow Load<br>(Test-load in accordance with IEC 61215) |                    | [Pa]         | 2400/5400 | Permitted Module Temperature<br>On Continuous Duty | -40°C up to +85°C |

# QUALIFICATIONS AND CERTIFICATES

IEC 61215, IEC 61730, Conformity to CE, Application Class A





**NOTE:** Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

## Hanwha Q CELLS GmbH

Sonnenaliee 17-21, 06766 Bitterfeld-Wolfen, Germany | TEL +49 (0)3494 66 99-23444 | FAX +49 (0)3494 66 99-23000 | EMAIL sales@q-cells.com | WEB www.q-cells.com

