

## VACON® 8000 SOLAR 125-1200 kW

VACON 8000 SOLAR 125-1200 kW series is a rugged cabinet assembled product line. The parallel inverter concept enables both cost and power efficient installations up to Megawatt range. This is your optimum choice for large centralized installations that cover a considerable area of land.

You can expect best-in-industry efficiency combined with the kind of ease and reliability that you would hope for in a product that is installed in remote areas. The VACON 8000 SOLAR 125-1200 kW series has been designed to be easy and fast to install and start up. For added convenience and ease, the design has also taken service needs into consideration, but thanks to its extreme reliability, that is a feature that you may never grow to appreciate.

### **FEATURES**

- Multimaster-topology (>=400 kW)
- Wide DC-input range: 410-900 VDC
- Separate input (DC), inverter and output (AC) sections for safety and redundancy (>=400 kW)
- Safety built in: AC- and DC-protections, Ground fault monitoring, Overload and overtemperature protection, IP21 steel cabinet
- Options available for DC-positive or –negative pole grounding, different communication set-ups and BOS equipment
- Common DC- and AC-bus bars for safety and for minimizing BOS costs

### **BENEFITS**

- Top of the industry efficiency
- Fast and easy commissioning and start up
- Additional reliability and redundancy
- Multimaster-topology increases life time and ensures top production yield
- Service friendly design
- Hot reconnect
- Thin film compatibility
- Available in MV Station
- Single configuration interface
- Connectivity to Vacon remote monitoring system
- Wide range of grid certifications
- Easy commissioning and start-up

|              |      |                    | · KN             | entlac      | A nnection     | ns were                  | urrer      | I A cont | se <sup>®</sup> • | SIMPE    | , u           | NtHOM          | iu.       | , milh       |
|--------------|------|--------------------|------------------|-------------|----------------|--------------------------|------------|----------|-------------------|----------|---------------|----------------|-----------|--------------|
| Inverter HPE |      | naloutput<br>North | Poner Wat        | o of output | Longetion Nath | ns net mark on indicated | it coned P | vo. Wat  | conne chiciency   | olo Pone | Aoo a juditu  | is Inverter of | reight ro | aurenent nah |
| NXV01252A2T  | 125  | 256                | 2                | 150         | 305            | 353                      | 4          | 96,8     | 95,2              | 0        | 800X2281X600  | 450            | 800       |              |
| NXV02002A2T  | 200  | 412                | 4                | 240         | 488            | 613                      | 4          | 98,6     | 97,6              | 0        | 800X2281X600  | 645            | 1000      |              |
| NXV04002A2T  | 400  | 825                | 12 <sup>[A</sup> | 480         | 976            | 1226                     | 20         | 98,6     | 98,0              | 60       | 2800X2281X600 | 1675           | 2000      |              |
| NXV06002A2T  | 600  | 1237               | 12 <sup>[A</sup> | 720         | 1463           | 1839                     | 20         | 98,6     | 98,2              | 60       | 3600X2281X600 | 2285           | 3000      |              |
| NXV08002A2T  | 800  | 1650               | 12 <sup>[A</sup> | 960         | 1951           | 2452                     | 32         | 98,6     | 98,2              | 60       | 4600X2281X600 | 3160           | 4000      |              |
| NXV10002A2T  | 1000 | 2062               | 12 <sup>[A</sup> | 1200        | 2439           | 3065                     | 32         | 98,6     | 98,2              | 60       | 5400X2281X600 | 3770           | 5000      |              |
| NXV12002A2T  | 1200 | 2474               | 12 <sup>[A</sup> | 1440        | 2926           | 3678                     | 32         | 98,6     | 98,2              | 60       | 6200X2281X600 | 4380           | 6000      |              |

## INPUT

| MPP voltage range        | 410 - 800 VDC |
|--------------------------|---------------|
| Max input voltage        | 900 VDC       |
| Max open circuit voltage | 850 VDC       |

## OUTPUT

| Nominal output voltage                        | 280 V, 3 phase                                                    |  |  |  |
|-----------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Output frequency                              | 50 / 60                                                           |  |  |  |
| Power factor                                  | Adjustable 0,8-1 leading/lagging                                  |  |  |  |
| AC overvoltage protection                     | Yes                                                               |  |  |  |
| AC current harmonics at rated power           | <3%                                                               |  |  |  |
| Step-up transformer requirement <sup>(h</sup> | Neutral not connected<br>and short circuit voltage<br>(Z%): >= 6% |  |  |  |

## **AUX POWER**

| Aux Power Supply <sup>(f</sup> | 1ph, 230VAC, 50/60Hz, 25A |
|--------------------------------|---------------------------|
| Auxiliary power fuse           | 25A                       |

## **AMBIENT**

| -10 C° to 40 C°                           |  |  |
|-------------------------------------------|--|--|
| 1,5% / 1C° up to 50 C°                    |  |  |
| 95%, no condensation allowed              |  |  |
| 2000m <sup>(g</sup>                       |  |  |
| Indoor, conditioned                       |  |  |
| PD2                                       |  |  |
| AC (Mains) = OVCIII<br>DC (Panel) = OVCII |  |  |
|                                           |  |  |

# SAFETY / PROTECTION

| IP class                   | IP21              |
|----------------------------|-------------------|
| Ground fault monitoring    | Yes               |
| Overload behaviour         | Power limiting    |
| Over temperature behaviour | Power limiting    |
| Forced stop                | Yes               |
| Circuit breaker AC side    | Yes <sup>(e</sup> |
| Circuit breaker DC side    | Yes               |

## **CONTROL INTERFACE**

| Communication | RS485 (Modbus RTU)<br>Ethernet (Modbus TCP)<br>GPRS                          |
|---------------|------------------------------------------------------------------------------|
| Signalling    | 3 Potential free contacts<br>to indicate faults and alarms<br>(programmable) |

### **CERTIFICATES**

| EMC                   | EN 61000-6-2, EN 61000-6-4                                                                       |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| Safety                | EN-62109-1                                                                                       |  |  |  |
| Grid Codes 125-200kW  | VDE 0126-1-1, EN 50438,<br>CEI 11-20, R.D. 1633/2000,<br>AS 4777.2, AS 4777.3,<br>IEC-62116      |  |  |  |
| Grid Codes 125-1200kW | BDEW 2008,<br>Arrëté du 23 avril 2008,<br>Allegato 17. Terna Regolazione<br>P.O. 12.2, P.O. 12.3 |  |  |  |

<sup>&</sup>lt;sup>(a)</sup> If AC Cubicle is left out, then 4 per inverter

Is AC Cubicle is left out, then 4 per inverter
Maximum input current withstand of the inverter cabinet
See manual for recommended cross sections of cables
Efficiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured to 40 VDC with external power supply for auxiliary components
Sebus Fificiency measured to 40 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 410 VDC with external power supply for auxiliary components
Sebus Fificiency measured at 4