Millennium 1MWh Level Energy Storage System

Content

1 Scor	pe of Specification	2
2 Stan	dards and Specifications	2
3 Nan	ne and Specification	3
1.	System Name	3
2.	System Specification	3
3 <u>Syst</u>	em	3
1.	System Grouping	3
2.	Systen Configuration	4
3.	Performance	5
	1. System Performance	5
	2. Module Performance	6
	3. Cell Performance	7
	4. Features of the BMS	7
	5. BMS Performance	8
4.	Size and Appearance	9
	1. Size and Appearance of Cell	9
	2. Size and Appearance of Module	10
	3. <u>Container</u>	10
	4. System layout	11
4 Syst	em Test Datas	12
1.	Operating Condition	12
2.	Consistence Testing On Battery (10%-90%SOC, 120 cycles)	12
3.	System test of response speed	13
4.	Electricity Quality Test	13
5.	Key Parameters Comparison	14

1 Scope of Specification

The scope of specification is limited to Energy Storage System-1MWh designed and produced by Millenniu Energy Storage Solution CO., LTD, with cell supplied from Tianjin Lishen Battery Joint-stock CO., LTD.

2Standards and Specifications

ISO2875: 2000, Packaging-Complete, filled transport packages and unit loads-Water spray test, IEC 60255-21-2: 1988 Shock and bump tests on measuring relays and protection equipment

ISO 780: 1997 Packaging - Pictorial marking for handling of goods

IEC 60068-2-1: 2007 Environmental testing - Part 2: Test methods - Tests A: Cold

IEC 60068-2-2: 2007 Environmental testing - Part 2: Test methods - Tests B: Dry heat

IEC 60068-2-78: 2001 Environmental testing for electric and electronic products - Part 2: Testing method test Cab: Damp heat, Steady state

IEC 60068-2-32: 1990 Environmental testing for electric and electronic products - Part 2: Test methods - Test Ed: Free fall

IEC 60068-2-6: 1995 Environmental testing for electric and electronic products - Part 2: Tests methods - Test Fc: Vibration (sinusoidal)

IEC 60947-1: 2001 Low-voltage switchgear and control gear—Part 1: General rules

GB/T 15945-2008 Power quality - Frequency deviation for power system

GB/T 12325-2008 Power quality - Deviation of supply voltage

GB/T 15543-2008 Power quality - Three-phase voltage unbalance

IEC 61000-3-7 Power quality - Voltage fluctuation and flicker

GB/T 14549-1993 Quality of electric energy supply - Harmonics in public supply network

IEC 62053-22: 2003 Electricity metering equipment (a.c.) - Particular requirements - Part 22: Static meters for active energy (classes 0, 2 S and 0, 5 S)

IEC 1038: 1990 Multifunction electricity metering equipment

IEC 1107 Multi-function watt-hour meter communication protocol

IEC 62493: 2009 Assessment of lighting equipment related to human exposure to electromagnetic fields

DL/T 5429-2009 Technical code of design for the electric power system

DL/T 5136-2001 Technical code for designing of electrical secondary wiring in fossil fuel power plants and substations

DL/T 620-1997 Overvoltage protection and insulation coordination for AC electrical installations

DL/T 621-1997 Grounding for AC electrical installations

GB 50217-2007 Code for design of cables of electric engineering

IEC 60050 (482): 2003 Electrotechnical terminology - Primary and secondary cells and batteries

IEC 61427-2005 Secondary cells and batteries for photovoltaic energy systems (PVES) – General requirements and methods of test

3 Name and Specification

1. System Name

Industrial MWh level Energy Storage System-1MWh

2. System Specification

LP44147272-228S12P

4 System

4.1 System Grouping

Table 1 System Grouping

	Cell	Battery Module	Battery Cluster	1094KWh System Unit
Туре	LP44147272	12S2P	228S2P	228S12P
Composition	-	12S2P	19 Module	6 Clusters
Specification	3.2V/125Ah	38.4V/250Ah	730V/250Ah	730V/1500Ah
Energy	400Wh	9.6KWh	182KWh	1094KWh
Number/1MW h	2736	114	6	1

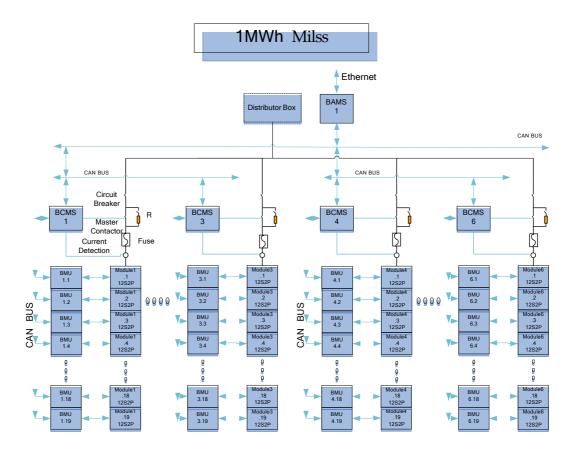


Figure 1 System Grouping

4.2 System Configuration

Table2 System Configuration

No.	Item	Specifications	unit	No.	Remarks
1	Battery System	1MWh	Set	1	Including batteries battery modules
2	BMS	1MWh	Set	1	Including a complete set of BMS and wire harness
3	HVC		Set	6	Including high voltage control box and some devices
4	High Voltage Device		Set	1	Including high voltage device cabinet and some devices

	Cabinet				
5	Connected System		Set	1	Including internal cables and so on
6	Container	40 Feet	Set	1	Including thermal management system fire extinguishing system lighting system and so on

4.3 Performance

4.3.1 System Performance

Table3 System Performance

N. Tables System Ferrormance				
No.	Item	Specifications		
1	CellType	LFP		
2	Cell	LP44147272 / 3.2V / 125Ah		
3	System Series and Parallel	228S12P		
4	System Nominal Voltage	730V		
5	System Nominal Capacity	1MWh		
6	System Working Voltage Range	570~832.2		
7	Charge cut-off Voltage	Cell 3.65V		
8	Discharge cut-off Voltage	Cell 2.5V		
9	System Discharge Current	0.5C		
10	System Maximum Discharge Current	2C (30S)		
11	System Charge current	0.5C		

12	System Charge Current	2C (30S)
13	Maximum Working Temperature Range	0°C∼45°C
13	Charge	5°C∼45°C
	Discharge	0°C∼45°C
14	The Best Working Temperature Range	15°C∼35°C
	System Storage Temperature	35%SOC or 3.275V~3.305V
15	In 1 month	-40°C~45°C
	In 6 months	-20°C∼35° C
16	System Environmental Humidity Requirement	≤90%RH
17	Cycle life	≥4000 Times@80%DOD@80% initial Capacity Left
18	Charge and Discharge Efficiency	93%
19	System Weight	7t*4
20	Dimensions(W D H)	6785*850*2400(W D H)
21	Level of Protection	IP40
22	Cooling Type	Air cooling
23	Communication Type	RS485、Ethernet

4.3.2 Module Performance

Table4 Module performance

No.	Item	Spec
1	Nominal Voltage	38.4V

2	Nominal Capacity	250Ah
3	Energy	9.6KWMh
4	Voltage range	KWMh 30~43.8V
5	Standard Charge Method	66/CV
6	Current	125A
7	Max Operating Temperature Range	0~45 ℃
8	Storage Temperature	-20~35℃
9	Weight	113±5Kg

4.3.3 Cell Performance

Table 5 Cell performance

No.	ltem	Spec
1	Nominal Capacity	125Ah
2	Nominal Voltage	3.2V
3	Voltage range	2.5-3.65V
4	Size	147×44×272mm
5	Weight	3.5±0.1 KG
6	Volume/Energy	0.4/1759.3kWh/L
7	Wdight/Energy	0.114 (0.4/3.5)
/	waight/Energy	kWh/kg

4.3.4 Features of the BMS

- Intelligent management and protection for a longer battery life and run time
- Modular design for extending easily, up to 360 Li-ion batteries in series
- ullet Accurate cell voltage monitor (± 1 mV each cell), reliablely protecting against overcharge/ overdischarge
- Full time active balance, max balance current is more than 5A, average balance current is
 more than 2A. Protects cells from disbalancing to maxmize battery capacity and battery life
- Internal system uses CAN2.0 high-speed bus to transmit data efficiently
- High accurace current monitor prevents battery from charging/discharging overcurrent
- Each cell adopts SOC distribution estimation so that cell power can be controlled individually

to prolong the battery life.

Multi-point temperature monitor

4.3.5 BMS Performance

Table6 BMS performance

No.	Item	Spec	
1	Accuracy of Voltage Sample	±1mV	
2	Period of Voltage Sample	≤100ms	
3	Temperature Detection Accuracy	±1℃	
4	Period of Temperature Sample	≤100ms	
5	Accuracy of Current Sample	≤±1%	
6	Period of Current Sample	≤100ms	
7	Single unit	≤2.5W	
	Consumption		
8	Average Balancing Current	2A	
9	Accuracy of SOC	≤5%	
10	Communication with PCS	RS485	
11	Communication with background	Ethernet	
	monitoring system		
12	Event log database	≥10000eventrecords	
13	Constants database	≥30 days	

4.4 Size and Appearance

4.4.1 Size and Appearance of Cell

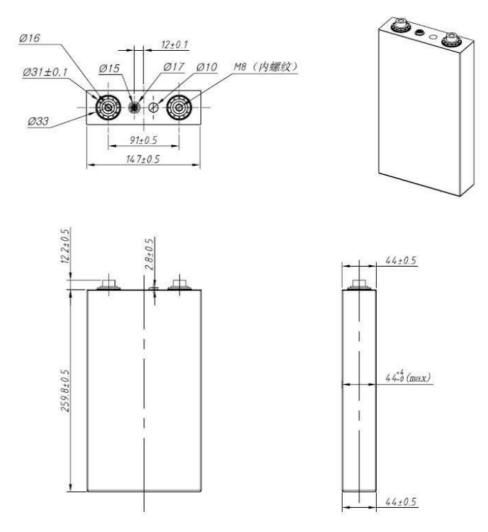


Figure 2 Size and Appearance of Cell

4.4.2 Size and Appearance of Module

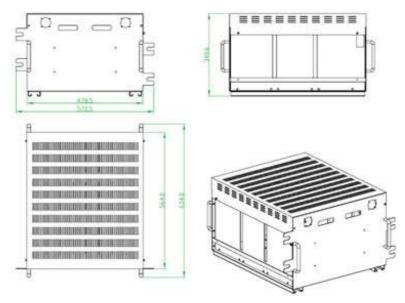


Figure 3 Size and Appearance of Module

4.4.3 Container

Figure4 Container

4.4.4 System layout

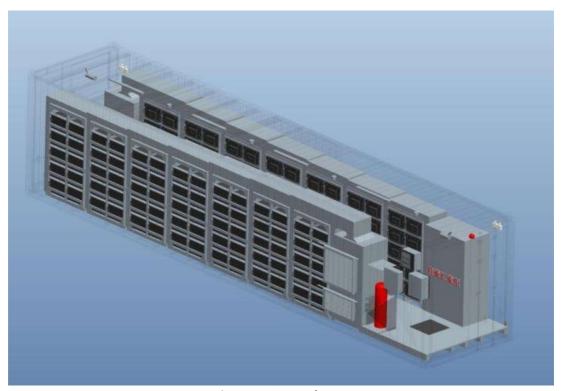


Figure5 Systemlayout

5 System Test Datas

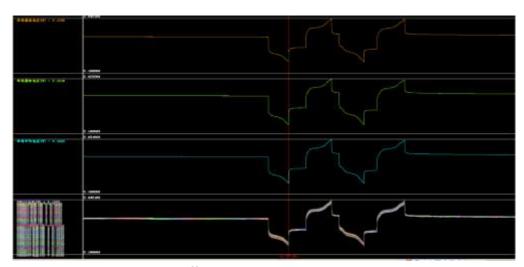
5.1 Operating Condition

Operating days 70 days

Operating style
 Peak and valley filling

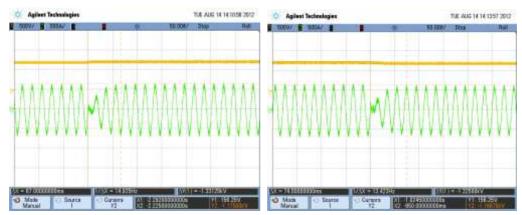
Cycles 120 times

Total charging capacity 70725KWh


Total discharging capacity 65752KWh

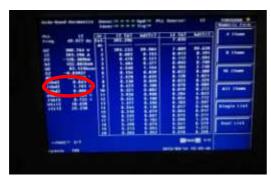
System efficiency 88% (96%*96*95)
Self consumption 4905W (air conditioner

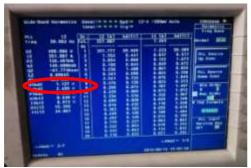
4905W(air conditioner are open) 1905W(air conditioner are not open)


5.2 Consistence Testing On Battery

(10%-90%SOC, 120 cycles)

Voltage difference in discharge end: 21.5mV; Voltage difference in charge end: 24.2mV; Voltage difference static: 7.2mV


5.3 System test of response speed


Time from charge full to discharge is 74.5ms.

Time from discharge empty to charge is 67ms.

5.4 Electricity Quality Test

Harmonic rate of 250KW Discharge with full power is 2.499%.

Harmonic rate of 250KW charge with full power is 1.791%.

5.5 Key Parameters Comparison

Item	Requirement of	Target of state	The actual value of	The actual value of
	State grid	863 project	state grid phase 1	AlphaESS
			project	
Voltage in consistence	80mV		36~90mV	20mV
Response speed of charge and discharge exchange	200mS	100mS		74mS
Current distortion rate	3%	3%		2.499%
System efficiency			86%	88%