

Series 7 TR1.

505-540 Watt Thin Film Solar Module

Series 7 TR1 thin film solar modules combine First Solar's thin film technology with an optimized structural design to deliver improved efficiency, enhanced installation velocity, and unmatched lifetime energy performance for large/utility-scale PV projects.

More Lifetime Energy per Nameplate Watt

- Industry's best (0.3%/yr) warranted degradation rate (>89% power output after 30 years)
- Superior temperature coefficient, spectral and shading response

Unmatched Quality and Reliability

- End-to-end manufacturing process for globally consistent quality
- Tested and certified to IEC standards and beyond
- Durable glass/glass construction
- Immune to and warranted against power loss from cell cracking
- 30-year Linear Performance Warranty
- 12-year Limited Product Warranty

Optimized Module Design

- Optimized back rail mount design enhances installation velocity
- Frameless design improves soiling and snow shedding
- Dual junction box design reduces wire management complexity and cost

Industry's Most Eco-efficient PV Solution

- Industry leading carbon footprint, water footprint and energy payback time
- Globally available PV module recycling services

America's Solar Company

Designed, responsibly sourced, and manufactured in the USA

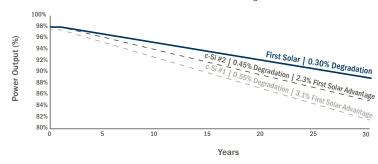
WARRANTY START POINT

19.3%

HIGH BIN EFFICIENCY

WARRANTED ANNUAL **DEGRADATION RATE**

LINEAR PERFORMANCE


WARRANTY

Learn more about First Solar and Series 7 TR1 at firstsolar.com/S7

First Solar Lifetime Energy Advantage

From 30 Year Warranted Annual Power Degradation

Series 7 TR1.

Electrical Specifications

MODEL TYPES: FS-7XXXA- $TR1$ (XXX = NOMINAL POWER) RATINGS AT STANDARD TEST CONDITIONS (1000W/ m^2 , AM 1.5, 25°C) ²								
P _{MAX} (W)	505	510	515	520	525	530	535	540
%	18.1	18.3	18.4	18.6	18.8	19.0	19.1	19.3
%	18.9	19.1	19.3	19.5	19.7	19.9	20.1	20.3
V _{MAX} (V)	182.5	183.4	184.3	185.2	186.0	186.9	187.8	188.7
I _{MAX} (A)	2.77	2.78	2.80	2.81	2.82	2.84	2.85	2.86
V _{OC} (V)	223.9	224.5	225.0	225.6	226.1	226.7	227.2	227.7
I _{SC} (A)	3.01	3.02	3.03	3.04	3.04	3.05	3.06	3.06
V _{SYS} (V)	1500 ⁵							
I _R (A)	5.0							
I _{CF} (A)	5.0							
	FST CONDITION PMAX (W) % VMAX (V) IMAX (A) VOC (V) ISC (A) VSYS (V) IR (A)	PMAX (W) 505 % 18.1 % 18.9 VMAX (V) 182.5 IMAX (A) 2.77 VOC (V) 223.9 ISC (A) 3.01 VSYS (V) IR (A)	PMAX (W) 505 510 % 18.1 18.3 % 18.9 19.1 VMAX (V) 182.5 183.4 IMAX (A) 2.77 2.78 Voc (V) 223.9 224.5 Isc (A) 3.01 3.02 Vsys (V) IR (A)	EST CONDITIONS (1000W/m², AM 1.5, 25°C)² PMAX (W) 505 510 515 % 18.1 18.3 18.4 % 18.9 19.1 19.3 VMAX (V) 182.5 183.4 184.3 IMAX (A) 2.77 2.78 2.80 VOC (V) 223.9 224.5 225.0 ISC (A) 3.01 3.02 3.03 VSYS (V) IR (A)	EST CONDITIONS (1000W/m², AM 1.5, 25°C)² P _{MAX} (W) 505 510 515 520 % 18.1 18.3 18.4 18.6 % 18.9 19.1 19.3 19.5 V _{MAX} (V) 182.5 183.4 184.3 185.2 I _{MAX} (A) 2.77 2.78 2.80 2.81 V _{OC} (V) 223.9 224.5 225.0 225.6 I _{SC} (A) 3.01 3.02 3.03 3.04 V _{SYS} (V) 15t I _R (A) 5	P _{MAX} (W) 505 510 515 520 525 % 18.1 18.3 18.4 18.6 18.8 % 18.9 19.1 19.3 19.5 19.7 V _{MAX} (V) 182.5 183.4 184.3 185.2 186.0 I _{MAX} (A) 2.77 2.78 2.80 2.81 2.82 V _{OC} (V) 223.9 224.5 225.0 225.6 226.1 I _{SC} (A) 3.01 3.02 3.03 3.04 3.04 V _{SYS} (V) 1500 ⁵ I _R (A) 5.0	P _{MAX} (W) 505 510 515 520 525 530 % 18.1 18.3 18.4 18.6 18.8 19.0 % 18.9 19.1 19.3 19.5 19.7 19.9 V _{MAX} (V) 182.5 183.4 184.3 185.2 186.0 186.9 I _{MAX} (A) 2.77 2.78 2.80 2.81 2.82 2.84 V _{OC} (V) 223.9 224.5 225.0 225.6 226.1 226.7 I _{SC} (A) 3.01 3.02 3.03 3.04 3.04 3.05 V _{SYS} (V) 1500 ⁵ I _R (A) 5.0	PMAX (W) 505 510 515 520 525 530 535 % 18.1 18.3 18.4 18.6 18.8 19.0 19.1 % 18.9 19.1 19.3 19.5 19.7 19.9 20.1 VMAX (V) 182.5 183.4 184.3 185.2 186.0 186.9 187.8 IMAX (A) 2.77 2.78 2.80 2.81 2.82 2.84 2.85 Voc (V) 223.9 224.5 225.0 225.6 226.1 226.7 227.2 ISC (A) 3.01 3.02 3.03 3.04 3.04 3.05 3.06 VSYS (V) 15005

RATINGS AT NOMINAL OF	RATINGS AT NOMINAL OPERATING CELL TEMPERATURE OF 45°C (800W/m2, 20°C air temperature, AM 1.5, 1m/s wind speed) ²						eed) ²		
Normal Power	P _{MAX} (W)	378.1	381.8	385.6	389.4	393.2	396.8	400.6	404.4
Voltage at P _{MAX}	V _{MAX} (V)	168.8	169.7	170.6	170.8	171.7	172.5	173.4	174.3
Current at P _{MAX}	I _{MAX} (A)	2.24	2.25	2.26	2.28	2.29	2.30	2.31	2.32
Open Circuit Voltage	V _{OC} (V)	211.9	212.4	212.9	213.5	214.0	214.5	215.0	215.5
Short Circuit Current	I _{SC} (A)	2.44	2.44	2.45	2.45	2.46	2.47	2.47	2.48

TEMPERATURE CHARACTERISTICS				
Module Operating Temperature Range	(°C)	-40 to +85		
Temperature Coefficient of P _{MAX}	T _K (P _{MAX})	-0.32%/°C [Temperature Range: 25°C to 75°C]		
Temperature Coefficient of V_{OC}	T _K (V _{OC})	-0.28%/°C		
Temperature Coefficient of I _{SC}	T _K (I _{SC})	+0.04%/°C		

Certifications & Tests⁴

CERTIFICATIONS & LISTINGS

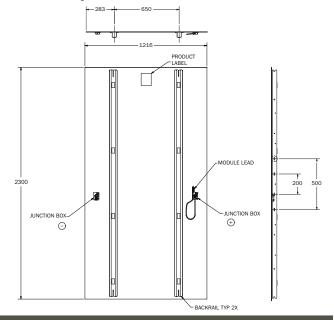
UL 61730 1500V Listed
IEC 61215:2021 & 61730-1:2016⁵
IEC 61701 Salt Mist Corrosion
IEC 60068-2-68 Dust and Sand Resistance
IEC 62716 Ammonia Corrosion

EXTENDED DURABILITY TESTS

IEC TS 63209-1 Extended Stress Test Long-Term Sequential Thresher Test PID Resistant

QUALITY & EHS

ISO 9001:2015 ISO 14001:2015 ISO 45001:2018 ISO 14064-3:2006 EPEAT Silver Registered



Mechanical Specifications

PACKAGING INFORMAT	TON	
Model Type	Modules Per Pack	Packs per 53' Container
FS-7XXXA-TR1	46	10

MECHANICAL DESCRIPTION					
Length	2300mm				
Width	1216mm				
Area	2.80m ²				
Module Weight	39.7kg				
Leadwire ⁶	2.5mm ² , 650mm (+) & Bulkhead (-)				
Connectors	TE Connectivity PV4-S or alternate				
Junction Box	IP68 Rated				
Bypass Diode	N/A				
Cell Type	Thin film CdTe semiconductor, up to 268 cells				
Frame Material	Galvanized steel				
Front Glass	Heat strengthened				
Back Glass	Heat strengthened				
Encapsulation	Laminate material with edge seal				
Frame to Glass Adhesive	Silicone				
Load Rating	2400Pa				

Install in portrait only

- 1 Limited power output and product warranties subject to warranty terms and conditions
- 2 All ratings ±10%, unless specified otherwise. Specifications are subject to change
- 3 Measurement uncertainty applies
- 4 Testing Certifications/Listings pending
- 5 IEC 61730-1: 2016 Class II
- 6 Leadwire length from junction box exit to connector mating surface

LEADING THE WORLD'S SUSTAINABLE ENERGY FUTURE

Disclaimer

All images shown are provided for illustrative purposes only and may not be an exact representation of the product. First Solar, Inc. reserves the right to change product images at any time without notice. The information included in this Module Datasheet is subject to change without notice and is provided for informational purposes only. No contractual rights are established or should be inferred because of user's reliance on the information contained in this Module Datasheet. Please refer to the appropriate Module User Guide and Module Product Specification document for more detailed technical information regarding module performance, installation and use.