

210-20BBHeterojunction Solar Cells

✓ Heterojunction Cell Technology

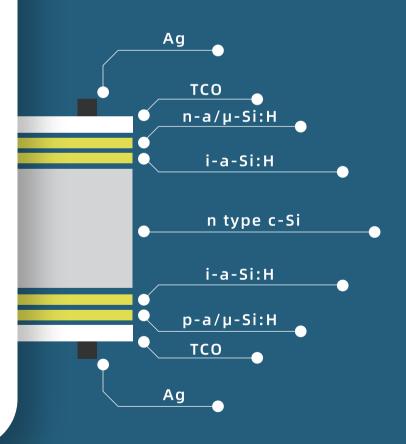
A heterojunction cell combines all the advantages of crystalline and thin-film solar technologies in a single hybrid structure.

The Bifacial efficiency rate is as high as 90%, the output of power is about 3%-6% higher than tha of bifacial PERC and TopCon cells solar module.

Excellent weak light performance

Under the lower irradiation intensity, HJT cells have an average of 1-2% more power per watt than PERC bifacial cells.

▼ The Highest Efficiency


Use 210mm N-Type silicon wafer, the highest power up to 5.68W, the efficiency up to 25.7%.

Higher efficiency at high temperature

The lowest temperature coefficient up to -0.243%/°C, at higher temperature, the output of HJT cell per W is about 0.6-3.9% higher than that of bifacial PERC cell.

✓ No PID

Battery surface is TCO, charge will not produce polarization phenomenon on the Cells surface TCO, no PID phenomenon



210-20BB

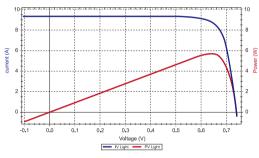
The Cells Front

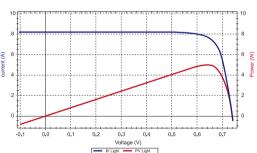
210

The Cells Back

Electrical Per	rforma	nce Par	ameters	5			
Efficiency Range	Eff	Pmp	Vmp	Imp	Voc	Isc	FF
	(%)	(W)	(V)	(A)	(V)	(A)	(%)
210M-2570	25.7	5.68	0.681	8.320	0.7523	8.6998	86.83
210M-2560	25.6	5.65	0.680	8.309	0.7521	8.6810	86.62
210M-2550	25.5	5.63	0.679	8.293	0.7516	8.6687	86.47
210M-2540	25.4	5.61	0.678	8.271	0.7514	8.6512	86.33
210M-2530	25.3	5.59	0.677	8.260	0.7510	8.6469	86.07
210M-2520	25.2	5.57	0.675	8.243	0.7510	8.6358	85.86
210M-2510	25.1	5.55	0.674	8.233	0.7506	8.6311	85.61
210M-2500	25.0	5.52	0.671	8.230	0.7493	8.6442	85.26
210M-2490	24.9	5.50	0.669	8.229	0.7484	8.6528	84.96

The amplitude of Voc (Isc) decreasing with irradiation intensity based on STC (1000W/ m^2 , AM1.5, 25°C).


Irradiation Dependence Characteristics


lrradiation (W/m²)	Voc	Isc	
1000	1.0	1.0	
900	0.99	0.9	
800	0.99	0.8	
600	0.98	0.6	
400	0.96	0.4	

Temperature Coefficient

Voc	-0.243 %/K	
Isc	+0.032 %/K	
Pmax	-0.243 %/K	

I-V Curves

Spectral Response

*The specifications and key features contained in this datasheet may deviate slightly from our actual products due to the ongoing innovation and product enhancement.

Mechanical data and Design

Dimension	210mm×105mm±0.25mm
Thickness	110±11µm
Front (-)	20×0.035mm Busbar(Sliver), Blue layer (TCO) (In order to improve efficiency, it will be continuously optimized and upgraded)
Back (+)	20×0.035mm Busbar(Sliver), 148Finger (Sliver), Blue layer (TCO) (In order to improve efficiency, it will be continuously optimized and upgraded)