Important Safety Instructions

Please keep the user manual properly for future reference!

Warning: It is essential to read, understand, and adhere to all safety instructions provided in this document. Failure to comply with safety regulations may result in property damage or personal injury.

> Basic Guidelines

- 1. Before using the equipment, carefully review all relevant sections of the device, battery, and instruction manual for all guidance and warning signs.
- Caution: To reduce the risk of injury, only charge deep-cycle lead-acid rechargeable batteries.
 Other types of batteries may rupture, causing personal harm.
- 3. This product does not contain user-serviceable parts. Do not disassemble the equipment. When maintenance or cleaning is required, take it to a qualified service center. Improper reassembly may pose risks of short-circuiting and fire. If any panel displays a malfunction, do not remove the front panel or operate the product. All operating procedures must be performed by trained professionals.
- 4. To reduce the risk of electric shock, disconnect all wiring before performing any maintenance and cleaning. Only turn off the main unit; this alone does not reduce the risk of electric shock.
- 5. Caution: Only qualified personnel should assemble the equipment with the battery.
- 6. Charging frozen batteries is prohibited.
- Exercise extreme caution when using metal tools or placing them around the battery. Dropping tools can generate sparks or cause unpredictable risks such as short-circuiting the battery or other electronic components, potentially leading to explosions.
- When disconnecting AC or DC terminals, strictly follow the installation steps as outlined in the instruction manual's installation section.
- 9. Before using this product, read the provided instructions to familiarize yourself with safety features and operating instructions. This product is designed and tested according to international standards. The equipment must be used exclusively for its intended purpose.

> Installation

- Do not use this product in areas where there is a risk of gas or dust explosions. Prior to use, consult with the battery manufacturer's relevant literature to ascertain the compatibility of this product with the battery. Always adhere to the safety instructions provided by the battery manufacturer.
- 2. This is a safety-class product equipped with a protective grounding terminal. Continuous protective grounding must be provided by the AC input/output terminals.
- 3. Grounding Instructions: The inverter/charger should be connected to a permanent grounding wire system to ensure full compliance with local requirements and regulations for installing the inverter. When grounding protection may have been compromised, the product must be shut down to prevent accidental electric shock.
- 4. To ensure optimal operation of the inverter/charger, adhere to the required specifications and select appropriate cable sizes, which are crucial for the correct operation of the inverter/charger.
- 5. Before connecting to the mains power, ensure that the available power supply meets the parameters specified in the product manual.
- Do not short-circuit the AC output and DC input. Do not connect the mains power when the DC output is short-circuited.
- Ensure that the equipment is used in conditions compliant with standards. Do not operate the product in moist or dusty environments. Ensure there is sufficient clearance space around the product and check that ventilation holes are not blocked.
- 8. Ensure that the required system voltage does not exceed the capacity of the product.

> Transportation and Storage

- Ensure that the power and battery cables are disconnected before storing or transporting the product.
- 2. If the equipment is not in its original packaging during transportation, any transport damage is not the responsibility of the manufacturer.
- 3. Store the product in a dry environment, with storage temperature between -20° C to 60° C.
- 4. Refer to the battery manufacturer's manual for information on battery transportation, storage, charging, recharging, and disposal.
- Please follow these instructions diligently to ensure safe installation, operation, transportation, and storage of the product.

Table of Contents

Important Safety Instructions	1
1 Overview	3
1.1 Scope	3
1.2 Target Audience	3
1.3 Manual Usage	3
2 Product Overview	4
2.1 Features	4
2.2 System Basic Architecture	5
2.3 Product Appearance	6
3 Assembly	9
3.1 Unboxing and Inspection	9
3.2 Installation Tools	9
3.3 Equipment Installation	10
3.4 Wiring Preparation	10
4 Wiring	11
4.1 Cable Size and Circuit Breaker Specifications	11
4.2 AC Input & Output Connection	12
4.3 Battery Connection	15
4.4 Photovoltaic Connection	17
4.5 Final Assembly	18
4.6 Communication Connection	18
5 Operation	20
5.1 Starting the Inverter	20
5.2 Introduction to the Operation Panel	20
5.3 Display Panel Introduction	21
5.4 Interface Overview	23
5.5 Operating Modes	23
5.6 LCD Screen Settings	25
6 Troubleshooting	32

User Manual POW-RELAB SERIES

POWMr

32
32
33
33
34
35
35
36
37

POWMr

1 Overview

1.1 Scope

This user manual provides information, operation, and maintenance guidance for the POW-RELAB series grid-tied inverter-charger integrated machines. The POW-RELAB series products are grid-tied inverters developed by PowMr for solar energy storage systems, suitable for various residential or commercial applications.

1.2 Target Audience

This manual is intended for professional technical personnel involved in the installation, operation, and maintenance of lithium batteries, as well as end-users seeking technical information.

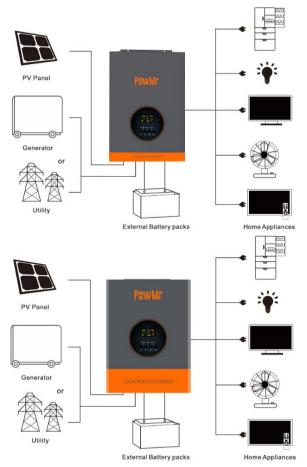
1.3 Manual Usage

- 1. Before using the product, carefully review this user manual and keep it stored in an easily accessible location.
- All information in the user manual, including images and symbols, is the property of PowMr. Unauthorized use of any portion or all of the content is prohibited for individuals outside the company.
- Considering the possibility of updates and revisions to the manual content, users are advised to use the accompanying manual as a reference. For the latest user manual, users can visit the official website or contact customer service.

2 Product Overview

2.1 Features

- The POW-RELAB series grid-tied solar inverter-charger integrated machines from PowMr are suitable for most residential and commercial scenarios, ensuring higher output stability and reliability.
- Flexible energy deployment is achieved through three operating modes, ensuring stable operation of loads while maximizing the utilization of solar clean energy. The energy-saving mode minimizes equipment self-consumption losses.
- It combines pure sine wave inverter output with mains or generator bypass output functions, supporting solar charging and AC power charging. The output power and charging power can be prioritized according to actual application needs.
- 4. The bottom of the machine is equipped with battery circuit fuses to ensure circuit safety.
- 5. It features built-in multiple protection functions and precise alarm mechanisms, providing comprehensive protection for system safety and stability.
- External communication is supported via RS232 or RS482. BMS communication is supported to effectively monitor battery operation, optimize battery pack operation efficiency, and extend the lifespan of the entire battery pack.



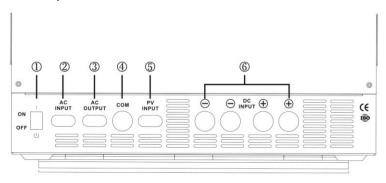
2.2 System Basic Architecture

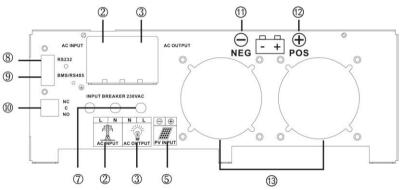
The following illustration depicts the basic application of the inverter/charger, along with the additional equipment required to form a complete operational system:

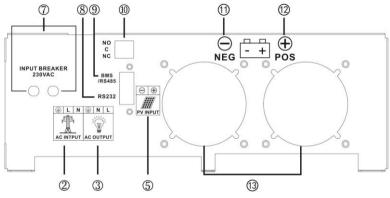
- Engine or mains power
- Photovoltaic modules

Additional system architectures can be consulted with system integrators based on your requirements. This inverter can provide power to various electrical appliances in residential or office environments, including lamps, fans, refrigerators, air conditioners, and other motor-type appliances.

2.3 Product Appearance


2.3.1 3KW Model (POW-RELAB 3KE/ POW-RELAB 3KU)


1	RS232 communication interface	\bigcirc	AC input
2	BMS/RS485 communication interface		AC output
3	③ Dry contact ports		Photovoltaic input
4	Fan	10	Battery negative terminal
5	Toggle switch	(1)	Battery positive terminal
6	Input overcurrent protector	(12)	Battery circuit fuse


2.3.2 5KW & 10KW Models (POW-RELAB 5KE/ POW-RELAB 5KU/ POW-RELAB 10KE/ POW-RELAB 10KU)

POW-RELAB 5KE/10KE/5KU

POW-RELAB 10KU

User Manual POW-RELAB SERIES

1	Toggle switch	8	RS232 communication interface
2	② AC input		BMS/RS485 communication interface
3	AC output	10	Dry contact ports
4	Communication port	(11)	Battery negative terminal
5	PV input	(12)	Battery positive terminal
6	Battery input	13	Fan
7	Input overcurrent protector		

3 Assembly

3.1 Unboxing and Inspection

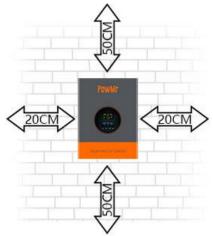
Before assembly, please inspect the unit to ensure that the items in the packaging are undamaged. Inside the package, you will find the following items:

- Inverter device x1
- Instruction manual x1

- Explosion screws
- Battery fuses

3.2 Installation Tools

Before installation, please prepare the following tools.


Category	Tools			
Gaparal Taola	Multimeter	Protective gloves	Insulated safety shoes	
General Tools	Protective clothing	Safety goggles	Antistatic wrist strap	
Installation Tools	Electric screwdriver	Socket wrench	Wire stripper	
Installation loois	Phillips screwdriver (M4/M6)	Electric drill	Hammer	

3.3 Equipment Installation

Before selecting an installation location, consider the following points:

- Do not install the inverter on combustible building materials.
- Install on a solid surface.
- Position the inverter at eye level for easy viewing of the LCD display.
- Maintain approximately 20cm spacing on each side and approximately 50cm spacing above and below the device for proper air circulation and heat dissipation.
- Ensure ambient temperature remains between 0°C to 55°C for optimal operation.
- It is recommended to install the device vertically against the wall.
- Ensure other objects, as shown in the diagram, maintain sufficient distance from the inverter

surface to ensure adequate heat dissipation and provide enough space for wiring removal.

Suitable for installation on concrete or other non-combustible walls.

Secure the device in place using two screws, preferably M4 or M5 screws.

3.4 Wiring Preparation

Loosen the fixed screws of the wiring terminal cover plate and remove the cover plate.

POWMr

4 Wiring

4.1 Cable Size and Circuit Breaker Specifications

> PV IN

The configuration of the photovoltaic input cable depends on the actual power and voltage parameters of the photovoltaic array.

- * Required Parameters: Photovoltaic input power, Photovoltaic input voltage
- * Wire Size Configuration: Photovoltaic input power / Photovoltaic input voltage / 5

For example: If the photovoltaic array has a power of 1600W and a voltage of 144V, the wire size is calculated as follows:

1600 / 144 / 5 \approx 2.22mm², so the wire size can be chosen as 3mm².

* Circuit Breaker Configuration: Photovoltaic input power / Photovoltaic input voltage

For example: If the photovoltaic array has a power of 1600W and a voltage of 144V, the circuit breaker specification is calculated as follows:

1600W / 144V \approx 11.11A, so the circuit breaker can be chosen as a model greater than 11.11A.

Madal	Cable Diameter		Circuit Breaker Spec	
Model	220V	110V	220V	110V
3KW	4mm ²	10mm ²	≥20A	≥35A
5KW	6mm ²	16mm ²	≥30A	≥60A
10KW	16mm ²	25mm ²	≥63A	≥125A

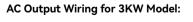
> AC IN

> Battery

Model	Cable Diameter	Circuit Breaker Spec
3KW	25mm²/15mm² x2	125A
5KW	25mm²/15mm² x2	125A
10KW	50mm ² /25mm ² x2	250A

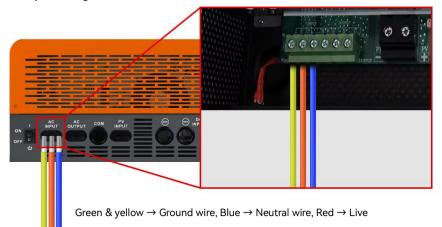
> AC OUT

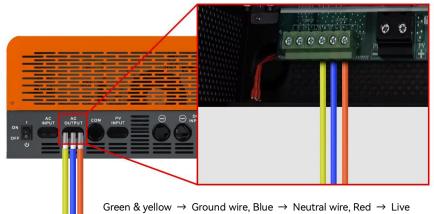
Maria	Cable Diameter		Circuit Breaker Spec	
Model	220V	110V	220V	110V
3KW	4mm ²	6mm ²	≥14A	≥28A
5KW	6mm ²	10mm ²	≥23A	≥46A
10KW	10mm ²	25mm ²	≥46A	≥91A



4.2 AC Input & Output Connection

- Connect the live wire, neutral wire, and ground wire to the respective terminals of the mains input and AC output as illustrated below, and install circuit breaker protection devices that meet the requirements on each of the two lines.
- 2. Ensure proper grounding of the equipment for safety. Ensure all cables are installed correctly and securely tightened.


AC Input Wiring for 3KW Model:



AC Input Wiring for 5KW/10KW Model:

AC Output Wiring for 5KW/10KW Model:

DANGER

- Before connecting the AC input and output, it is essential to open the circuit breaker to avoid the risk of electric shock. Do not perform any operations while the power is on.
- Please ensure that the cables used meet the requirements. Thin or poor-quality cables pose a serious safety hazard.

4.3 Battery Connection

Please connect the positive and negative terminals of the battery according to the diagram below. Be sure to install a circuit breaker that meets the specifications on the battery circuit.

Battery Connection for 3KW Model:

ATTENTION

• The POW-RELAB series inverters come standard with a fuse device for the battery circuit. Please use it according to actual needs.

POWMr

- Before connecting the battery, it is essential to disconnect the circuit breaker to avoid the risk of electric shock. Do not perform any operations while the power is on.
- Ensure that the positive and negative terminals of the battery are correctly connected and not reversed, as this could damage the inverter.
- Please ensure that the cables used meet the requirements. Thin or poor-quality cables pose a serious safety hazard.

4.4 Photovoltaic Connection

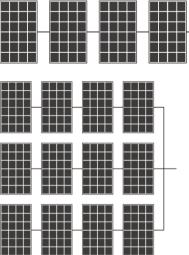
Please connect the photovoltaic array according to the diagram below, and strictly adhere to the requirement of installing a circuit breaker that meets the specifications.

Photovoltaic Connection for 3KW Model:

Photovoltaic Connection for 5KW/10KW Model:

Black→Negative terminal, Red→Positive terminal

DANGER


- Before connecting the photovoltaic panels, it is essential to open the circuit breaker to avoid the risk of electric shock. Do not perform any operations while the power is on.
- Please ensure that the open-circuit voltage of the connected photovoltaic modules in series does not exceed the maximum open-circuit voltage of the inverter (which is 150V in the POW-RELAB series), as otherwise, the inverter may be damaged.

4.4.1 Selecting and Configuring Photovoltaic Panels

The following parameters are obtained from the specifications of photovoltaic panels:

- Pmax: Maximum output power (W)
- Voc: Open-circuit voltage (V)
- Isc: Short-circuit current (A)
- Vpm: Rated voltage (V)
- Ipm: Rated current (A)

Photovoltaic panels can be connected in series or parallel to obtain the required output voltage and current to meet the photovoltaic input range allowed by the solar controller and invertercharger.

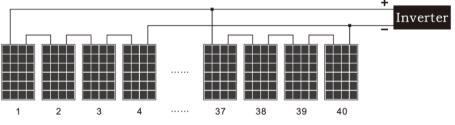
When photovoltaic panels are connected in series, the total voltage and current are: Vstring = V1 + V2 + V3 + V4...

Istring = I1 = I2 = I3 = I4 =...

When parallel-connected photovoltaic panels are connected in parallel, the total voltage and current are: Vtotal = Vstring1 = Vstring2 = Vstring3 = ... Itotal = Istring1 + Istring2 + Istring3 +...

PØWMr

- In any scenario, the total output power is equal to the power of a single photovoltaic panel multiplied by the total number of panels. The guideline for configuring photovoltaic panels is that the total power should be equal to or slightly greater than the maximum allowable PV power of the solar controller (refer to the technical specifications table). Excess capacity of photovoltaic panels does not contribute to the capacity of the solar charger; it only leads to higher installation costs.
- The total Ipm of photovoltaic panels should be less than the maximum charging current of the inverter.
- The total Voc of photovoltaic panels should be less than the maximum PV input voltage of the inverter (refer to the technical specifications table).

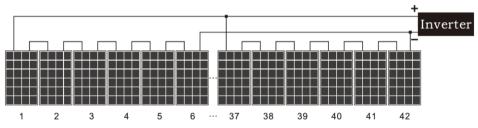

Example: Taking a **48V** inverter as an example, selecting suitable photovoltaic components. Considering two scenarios for the built-in charging module of the inverter: The maximum photovoltaic input for PWM controller is 105V. The maximum photovoltaic input for MPPT controller is 150V. The total power should be equal to or slightly greater than 3200W. We can choose the following specifications for photovoltaic panels:

Maximum power Pmax(W)	80W
Rated voltage Vpm(V)	18V
Rated current lpm(A)	4.46A
Open-circuit voltage Voc(V)	21.6V
Short-circuit current lsc(A)	4.8A

Number of photovoltaic panels in each series: MPPT \rightarrow 4 panels (421.6V<105V) MPPT \rightarrow 6 panels (621.6V<150V) Total number of photovoltaic panels: 40 pieces \rightarrow 3200W/80W: 40 (panels) Number of parallel-connected groups: PWM \rightarrow 10 groups (40/4=10 groups) MPPT \rightarrow 7 groups (40/6=7 groups)

Configuration scheme for 48V inverter:

PWM controller: 4 panels of photovoltaic panels are connected in parallel to the inverter, with 10 groups of panels connected in parallel.



17

MPPT controller: Every 6 panels of photovoltaic panels are connected in series to form one group,

and 7 groups of photovoltaic panels are connected in parallel.

Solar panel daily output = Total power of solar panel x Controller conversion efficiency x Local average sunlight time.

4.5 Final Assembly

After confirming all connections are accurate and tightened, please reinstall the port protective cover onto the device.

4.6 Communication Connection

4.6.1 BMS Communication

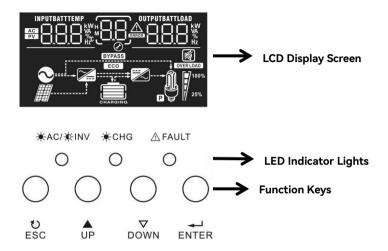
When the BMS communication interface is externally connected, the pin definitions are as follows:

Pin	Definition
PIN1	485B
PIN2	485A
PIN3/4/5/6/7/8	NC

4.6.2 Dry Contact Function

Operating Principle: Dry contacts can control the AC input switch for battery charging.

				Dry Contact	: Port:	
Device Status	Condition		Condition			
				NC&C	NO&C	
Power Off	Device is tur	rned off with I	no output power.	Close	Open	
		Normal Mode	Battery voltage < DC undervoltage alarm voltage.	Open	Close	
	Output powered		Battery voltage > Float charge voltage.	Close	Open	
Power On	by battery or solar energy.	Solar	Battery voltage < Solar switching to AC power voltage.	Open	Close	
	Priority Mode	Battery voltage > AC power switching to DC power voltage.	Close	Open		



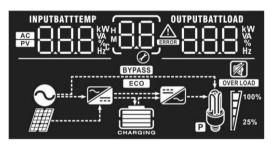
5 Operation

5.1 Starting the Inverter

After closing the circuit breaker of the battery line, start the inverter by using the boat-shaped switch at the bottom. Once the inverter starts up normally, sequentially close the circuit breakers of the photovoltaic input, AC input, and AC output lines.

5.2 Introduction to the Operation Panel

> LED Indicator Lights


LED Indicator Light		nt	Instruction
		Steady On	In mains mode, output is powered by mains electricity.
₩AC/₩INV	Green	Flashing	In battery mode, output is powered by battery or PV.
- ₩ CHG	Yellow	Steady On	Battery fully charged.
- CHG	Flashing		Battery charging in progress.
≜ FAULT	Red	Steady On	The inverter is in the fault state.

> Function Keys

Function Key	Instructions
ບ ESC	Exit setup mode.
▲ UP	Go to the previous selection.
∇ DOWN	Go to the next selection.
⊸ ENTER	Confirm selection or enter setup mode in setup mode.

5.3 Display Panel Introduction

lcons	Function					
Input Power Information						
AC	Indicates AC input.					
PV	Indicates photovoltaic input.					
	Indicates input voltage, battery voltage, device temperature, photovoltaic					
888%	input voltage, operating mode, firmware version.					
Configuration and	Fault Information					
88	Page number indication.					
	Indicates alarm and fault codes.					
	Alarm: $\textcircled{BB}^{\triangle}$ Flashing with alarm code.					

User Manual

POW-RELAB SERIES

POW-RELAD SERI	15							
	Fault: 88 St	Fault: Elements Steady on with fault code.						
Output Informatio								
OUTPUTBATTLOAD	Indicates output voltage, charging current, load percentage, photovoltaic							
888 #	input current, cha	rging mode, firmwa	are version.					
Battery Informatio	on							
	In battery mode a	nd mains mode, cha	arging status is repre	esented by 0-24%,				
	25-49%, 50-74%,	and 75-100% indic	ating battery level.					
CHARGING	In mains mode, it	represents battery	charging status.					
	In battery mode, i	t represents batter	y capacity.					
Load Information								
OVER LOAD	Indicates load.							
	Represents load	levels of 0-24%	, 25-49%, 50-74%	%, and 75-100%				
M 100%	respectively.							
	0%~24%	25%-49%	50%~74%	75%~100%				
25%	[7	[7	•7	7				
	1	1	1	1				
Indicates device of	onnected to mains							
8	Mains power indic	cation.						
	PV input indication.							
BYPASS	Bypass indication.							
	Rectifier circuit indication.							
	Inverter circuit indication.							
Silent Operation								
	Indicates alarm bu	uzzer function is tur	rned off.					

5.4 Interface Overview

Middle Display	Left Display	Right Display			
P0	AC Input Voltage	AC Output Voltage			
P1	Battery Voltage	Charging Current			
P2	Device Temperature	Load Percentage			
P3	Photovoltaic Input Voltage	Photovoltaic Input Current			
P4	Operating Mode Charging Mode				
U0					
U1	Firmware Version				

5.5 Operating Modes

5.5.1 Grid Mode

Press the power button to start the device. When grid power is available, the inverter operates in grid mode, and the green "AC" indicator light remains steady.

5.5.2 Inverter Mode

In the event of a grid power outage or generator failure, the device switches to inverter mode, providing direct power to the load. The transition time is less than 10 milliseconds, ensuring uninterrupted operation of computers and other electronic devices. The green "INV" indicator light on the LCD screen will blink.

5.5.3 Charging Mode

When grid power or generator power is restored, the inverter enters charging mode. The green "AC" indicator light remains steady, while the yellow "CHG" indicator light starts blinking. Once the battery is fully charged, the blinking yellow indicator light changes to steady.

5.5.4 Alarm Mode

In case of a device malfunction, the red "FAULT" indicator light illuminates along with an audible alarm.

5.5.5 Bypass Function

When the device is turned off and grid power or generator power is available, the output terminals receive output voltage and begin charging. If there is no grid power or generator power, the output terminals do not supply voltage.

5.5.6 Energy-saving Mode

If there is no AC power input, the inverter's AC output will only supply power when a load greater than 15 watts is connected. It automatically checks the connected load every 25 seconds.

PowMr

5.6 LCD Screen Settings

> To enter the settings mode, follow these basic steps and configure the program as needed:

- 1. Enter settings mode: Long press the ENTER button for 10 seconds.
- 2. Exit mode: Press the ESC button multiple times.
- 3. Select the parameter to be modified using the UP/DOWN buttons, then press ENTER to confirm.
- 4. The parameter will blink, allowing you to change it using the UP/DOWN buttons. Once done, press ENTER and wait for the settings to be completed.
- > LED Signal Indicator Display:
- 1. During settings: The setting icon will blink.
- 2. Upon successful setting: The border on the left side of the parameter blinks.
- 3. In case of setting failure: "ERROR" is displayed, and the fault indicator light is on.

ltem	Left Display	Middle Display	Right Display	Parameter Setting Range	Explanation				
Grid Input	AL	00	UPS	Narrow Range	Grid input range: KE Model: 180~265Vac ±3V KU Model: 92~132Vac ±3V				
Voltage Range	Alr	00	00	00	00		APL default	Wide Range	Grid input range: KE Model: 155~265Vac ±3V KU Model: 77~132Vac ±3V
Grid			LO	Narrow Range	Grid input range: 45~65Hz				
Frequency Range	AFr	01	HI default	Wide Range	Grid input range: 40~65Hz				
Operating		Nerre	UTI default	Grid Priority	Grid power is prioritized to supply the load. Solar energy and battery power supply the load only when grid power is insufficient.				
Mode	None	02	SOL	Solar Priority	When solar power is sufficient, it will be the primary source for powering the load. If solar power is insufficient, both solar and				

POW-RELAB SERIES

POWMr

			SBU	Inverter Priority	battery power will supply the load simultaneously. Additionally, if the battery voltage reaches the low battery warning level or the preset voltage point for switching from DC output to AC output, the power supply to the load will switch to the grid. The battery power is only activated when solar power is available. If there is no PV input, the battery will stop supplying power, and the grid will power the load. When solar power is sufficient, it will be the primary source for powering the load. If solar power is insufficient, both solar and battery power will supply the load simultaneously. When no solar power is available, the battery will power the load. If the battery voltage drops to the low battery warning level or the preset voltage point for switching from DC output to AC output, the power supply to the load will switch to the grid.
Charging Mode	None	03	CUT default	Grid Priority	Both grid input and solar energy charge the battery simultaneously.
			CSO	Priority	In solar priority mode, if solar energy is available, the

					inverter will prioritize using solar energy to charge the battery. When the battery voltage drops below the setting value of item 09, the charging source automatically switches to grid power. When the battery voltage exceeds the setting value of item 10, the charging source automatically switches to solar energy.
			OSO	Solar Charging Only	Only solar energy is allowed as the charging source.
Grid Charging Current Percentage	ACP	04	100%	10~100%	Set the percentage of grid charging current.
Solar Charging Current Percentage	SCP	05	100%	20~100%	Set the percentage of solar charging current.
			14.2V	13.5~15.0V	Set the boost charging voltage, i.e., constant voltage
Boost Charging Voltage (CV)	CU	06	28.4V	27.0~30.0V	charging voltage. Please strictly follow the parameters
			56.8V	54.0~60.0V	in the battery specification for setting.
Float			13.6V	12.5~14.0V	Set the float charging voltage for the battery.
Charging	FLU	07	27.2V	25.0~28.0V	Please strictly follow the
Voltage			54.0V	50.0~56.0V	parameters in the battery specification for setting.

User Manual

POW-RELAB SERIES

	1		r	1	1
Battery			10.2V	9.5~11.5V	Set the shutdown voltage point for battery protection.
Discharge Cutoff Shutdown	COU	08	20.4V	19.0~23.0V	When the battery voltage drops below this set value, the inverter will automatically
Voltage			40.8V	38.0~46.0V	shut down to prevent deep discharge of the battery.
Enable Grid			12.0V	11.5~12.5V	Configure the voltage value
Charging	DTA	09	24.0V	23.0~25.0V	of grid power used for charging the battery in solar
Voltage			48.0V	46.0~50.0V	priority charging mode.
Fuit Crid			13.5V	13.0~14.0V	Stop using the voltage value
Exit Grid Charging	ATD	10	27.0V	26.0~28.0V	of grid power for charging the battery in solar priority
Voltage			54.0V	52.0~56.0V	charging mode.
Inverter Output Voltage	OU	11	220V	200~240V	Set the inverter output voltage.
			н	Fast	Grid sensitivity setting,
Grid Detection Speed	CST	12	IDE default	Medium	configuring the response speed for grid power
opeed			LO	Slow	fluctuations.
Inverter Output	OF	13		50Hz I efault	Set the inverter output
Frequency			60Hz		frequency.
Fault Restart Switch	RA	14	TE default	Enabled	Automatically restarts three times in case of short circuit or overload faults.
SWILCH			TD	Disabled	Does not restart in case of short circuit or overload

					faults.
			LON	Always On	Backlight remains on and
			LOIN	Aiways On	does not turn off.
Dealdista			LOF	Always Off	Backlight remains off and
Backlight Control	BLC	15	LOI	Always Oli	does not turn on.
Control			LOD		Automatically turns off
			default	Delayed Off	backlight after 1 minute of
			uelault		inactivity.
			AON		When enabled, the buzzer
			default	Enabled	will sound an alarm in case of
Buzzer	BFC	16	delault		device faults.
Control Switch	BLC	10			When disabled, the buzzer
			AOF	Disabled	will not sound in case of
					device faults.
Battery		L 17	Off	Disabled	Defaulted to enabled. This is
Under	BOL				an intelligent battery
Voltage	BOL		On	Enabled	protection feature, and it is
Alarm Switch			default	Ellapieu	not recommended to change.
		_L 18	Off	Disabled Enabled	Defaulted to enabled. This is
Load			OII		an intelligent battery
Limitation	LL		On		protection feature, and it is
			default	LINDIEU	not recommended to change.
/	LEL	19	This mod	el does not sup	port this setting for now.
			0	2400	
David Data	BAU	20	default	2400	Set communication baud
Baud Rate	BAU	20	1	4800	rate.
			2	9600	
			220	220	Set to display output voltage.
Inverter	ODT	21		220	This is only for adjusting the
Output Mode		21	110	110	display and does not change
			110	110	the inverter output voltage.

User Manual

POW-RELAB SERIES

					After abnormal shutdown of
_			11.5V	10.5~12.2V	the inverter, the device can
Startup	BLS	22	23.0V	21~24.4V	only be manually restarted if
Battery Voltage	DLS	22	23.0 V	21.4.41	the battery voltage is higher
g -			46.0V	42~48.8V	than this set value.
			13.0V	12~14V	After shutdown due to
			26.0V	24~28V	
Undervoltage			26.07	24~28V	battery undervoltage, the
Shutdown	BLS	23			inverter can automatically
Recovery Voltage			52.0V	48~56V	restart when the battery
Voltage					voltage exceeds this set
					value.
			SEL	SEL	Sealed Lead Acid Battery
			GEL	GEL	Gel Sealed Lead Acid Battery
	BTT	24	FLD	FLD	Flooded Lead Acid Battery
Battery Type			USER	USER	User Defined
Buttery type	2		default	OOLIN	
			TER	LiCoMnNiO2	Lithium-ion Battery
			LIF	BAT- LiFePOW4	Lithium Iron Phosphate
			LIF		Battery
					Enable BMS communication
					function. When enabled,
BMS			0.55	ON	settings 26~29 can be
Function	BnS	25	OFF		effectively configured and
Switch			default		executed.
					Disable BMS communication
				OFF	function.
					Configuration of BMS
Undervoltage					undervoltage shutdown SOC.
Shutdown	BSU	26	10%	5~50%	When the battery SOC is
SOC			default		detected below the set value,
					the inverter will automatically
					and meter the date mattering

Switch to Utility Mode SOC	STG	27	20% default	5~50%	shut down to protect the battery. If the inverter operation mode is set to Battery Priority Mode, when the battery SOC is below the set value, it will forcibly switch to utility charging mode.
Switch to Inverter Mode SOC	STB	28	95% default	50~100%	If the inverter operation mode is set to Battery Priority Mode, when the battery SOC is above the set value, it will revert to battery inverter operation mode.
Restart SOC	BSR	29	50% default	30~100%	After the inverter is powered on, it can only operate normally when the SOC is above the set value.
Restore Factory	RS	30	OFF	ON	Restore factory settings.
Settings	1.0		default	OFF	1
ECO Energy	ECO	None	OFF	ON	Enable energy-saving mode.
Saving Mode	200	NOLIG	default	OFF	Disable energy-saving mode.

6 Troubleshooting

6.1 Alarms

Left Display	Right Display	Instructions
ALA	021	Device Communication Connection Failure
ALA	233	Abnormal Utility Output
ALA	236	Abnormal Load in the Device
ALA	237	Overload in the Device
ALA	231	Abnormal Inverter Output
ALA	234	High Battery Voltage
ALA	235	Low Battery Voltage
ALA	241	Storage Chip Data Read/Write Error
ALA	232	Storage Chip Connection Failure
ALA	238	Device Overtemperature
ALA	239	Inverter Temperature Too High Due to Connected Load
ALA	242	Shutdown Executed by Upper Computer Software
ALA	244	BMS-Other Faults
ALA	245	BMS-Communication Anomaly
ALA	246	BMS-Charging Overcurrent
ALA	247	BMS-Discharging Overcurrent
ALA	248	BMS-Overtemperature
ALA	249	BMS-Low Temperature

6.2 Alarm Event

Audible alarm	Buzzer Alarm	
Low battery	Audible alarm - Beeping for 1 second	
Overload	Audible alarm - Continuous beeping	
Fault	Audible alarm - Continuous beeping	

POWMr

6.3 Errors

Left Display	Right Display	Instructions
FAL	102	Inverter Overload Shutdown
FAL	104	Abnormal Inverter Output
FAL	105	Inverter Load Abnormality
FAL	106	Inverter Overtemperature
FAL	135	High Battery Voltage
FAL	134	Low Battery Voltage
FAL	123	Connected Load Causes Inverter Overtemperature
FAL	169	Current Detection Signal Failure
FAL	161	Abnormal Utility Output
FAL	152	Temperature Sensor Connection Failure
FAL	162	Shutdown Executed by Upper Computer Software

6.4 Troubleshooting

Issue	Possible Causes	Solution	
Inverter fails to operate	Battery terminals not	Tighten the battery	
properly after startup	tightened	terminals.	
Coording about of at		Inspect the polarity of the	
Sparking observed at inverter terminals	Reverse polarity connection	terminals and reconnect	
inverter terminals		them correctly.	
		Remove the port cover and	
No output from the inverter	Output terminal rows not	tighten the corresponding	
	tightened	terminal rows.	
la contra constituita de const	Input voltage less than	Increase the voltage using a	
Inverter unable to charge	150Vac	stabilizer.	
Continuous alarm from			
inverter buzzer during load	Inverter overload	Check the load and reduce	
operation		high-power loads.	

7 System Maintenance

- 1. To maintain optimal and long-term performance, it is recommended to conduct the following checks twice a year:
- Ensure that the airflow around the all-in-one machine is not obstructed, and clear any dirt or debris from the heat sink.
- Inspect all exposed wires for damage to insulation caused by exposure to sunlight, friction with surrounding objects, dryness, insect or rodent damage, etc. Repair or replace wires as necessary.
- 4. Verify that the indicators and displays are consistent with equipment operation. Take corrective action if any faults or error displays are observed.
- Inspect all terminal connections for corrosion, insulation damage, high temperature, or signs of burning/discoloration. Tighten terminal screws.
- 6. Check for dirt, nesting insects, and corrosion, and clean as required.
- If surge protectors have failed, promptly replace the failed surge protectors to prevent damage from lightning strikes to the all-in-one machine or other user equipment.

* The following damages are not covered by the company's liability:

- 1. Damage caused by improper use or use in inappropriate locations.
- Damage caused by the open-circuit voltage of photovoltaic modules exceeding the maximum allowable voltage.
- Damage caused by operating environment temperatures exceeding the limited operating temperature range.
- 4. Unauthorized disassembly and repair of the all-in-one machine.
- 5. Damage caused by force majeure: damage occurring during transportation or handling of the all-in-one machine.
- * The following situations are not covered by the warranty:
- 1. User-configured batteries.
- 2. Equipment damage caused by operation not in accordance with the user manual.
- 3. Machine damage caused by natural disasters such as fire, flood, etc.
- 4. Products beyond the warranty period are subject to paid repair services.

8 Specifications

8.1 Table 1: Utility Mode Parameters

Model	POW-RELAB 3KE	POW-RELAB 5KE	POW-RELAB 10KE
Input Voltage Waveform	Pure Sine Wave		
Nominal Input Voltage	220Vac		
AC Input Voltage Range	154~265Vac		
Nominal Input Frequency	50Hz / 60Hz (Auto Detection)		
Transfer Time	≤10ms (UPS); ≤20ms (APL)		
Input Protection	Circuit Breaker		
Output Protection	Circuit Breaker		

Model	POW-RELAB 3KU	POW-RELAB 5KU	POW-RELAB 10KU	
Input Voltage Waveform	Pure Sine Wave			
Nominal Input Voltage		110Vac		
AC Input Voltage Range	77~132Vac			
Nominal Input Frequency	50Hz / 60Hz (Auto Detection)			
Transfer Time	≤10ms (UPS); ≤20ms (APL)			
Input Protection	Circuit Breaker			
Output Protection	Circuit Breaker			

8.2 Table 2: Inverter Mode Parameters

Model	POW-RELAB 3KE	POW-RELAB 5KE	POW-RELAB 10KE	
Rated Output Power	3000W/3800VA	5000W/6300VA	10000W/12500VA	
Output Voltage Waveform	Pure Sine Wave			
Output Voltage Range		220Vac±10%		
Output Frequency	50Hz / 60Hz			
Peak Power	9000W 15000W 30000W			
Efficiency	>98%			
Bypass Mode	Integrated			
Eco Mode	Integrated			
Nominal DC Input Voltage	24Vdc 48Vdc			

Model	POW-RELAB 3KU	POW-RELAB 5KU	POW-RELAB 10KU
Rated Output Power	3000W/3800VA	5000W/6300VA	10000W/12500VA
Output Voltage Waveform	Pure Sine Wave		
Output Voltage Range	110Vac±10%		
Output Frequency	50Hz / 60Hz		
Peak Power	9000W 15000W 30000W		
Efficiency	>98%		
Bypass Mode	Integrated		
Eco Mode	Integrated		
Nominal DC Input Voltage	24Vdc 48Vdc		

8.3 Table 3: Charging Mode Parameters

Model	ЗКЖ	5KW	10KW		
Battery					
Battery Type	AGM, FLD, GEL, Lithium battery				
Battery Charging Voltage	27.4VDC	54.8VDC	54.8VDC		
Battery Undervoltage Cutoff Voltage	20\/21\	40V/	/42V		
Battery Undervoltage Warning Voltage	Mild discharge: 23V; Loaded discharge: 23V @ load < 20% / 22V @ load > 50% / 21V @ load > 50%	Mild discharge: 46V; Loaded discharge: 46V @ load < 20% / 44V @ load > 50% / 42V @ load > 50%			
Battery Undervoltage Recovery Voltage	Mild discharge: 24V; Loaded discharge: 24V @ load < 20% / 23V @ load > 50% / 22V @ load > 50%	Mild discharge: 48V; Loaded discharge: 48V @ load < 20% / 46V @ load > 50% / 44V @ load > 50%			
Battery Undervoltage Shutdown Voltage	Mild discharge: 22V; Loaded discharge: 22V @ load < 20% / 21V @ load > 50% / 20V @ load > 50%	Mild discharge: 44V; Loaded discharge: 44V @ load < 20% / 42V @ load > 50% / 40V @ load > 50%			
Battery Overvoltage Warning Voltage	32V 64V				
Battery Overvoltage Recovery Voltage	30V	60V			
PV Input					
Max. PV Array Power	1600W	6400W 6400W			
MPPT Input Voltage Range	30~150Vdc 60~150Vdc				
Max. PV Array Open Circuit Voltage	150Vdc				
Charging Current					
Maximum AC Charging Current	38A	29A 60A			
Max. PV Charging Current	60A 120A				

8.4 Table 4: General Parameters

Model	POW-RELAB 3KE	POW-RELAB 5KE	POW-RELAB 10KE
Operating temperature	-10°C to 50°C		
Storage temperature	-15°C to 50°C		
Humidity	Relative humidity from 5% to 95% (non-condensing)		
Noise	< 45dB		
Dimensions (LxWxH)	465*310*135mm 545*400*200mm		
Net weight	19kg	27.4kg	51kg

Model	POW-RELAB 3KU	POW-RELAB 5KU	POW-RELAB 10KU
Operating temperature	-10°C to 50°C		
Storage temperature	-15°C to 50°C		
Humidity	Relative humidity from 5% to 95% (non-condensing)		
Noise	< 45dB		
Dimensions (LxWxH)	465*310*135mm 545*400*200mm		
Net weight	19kg	27.4kg	52kg